Sains Malaysiana 53(5)(2024): 1133-1147
http://doi.org/10.17576/jsm-2024-5305-13
Efficient Removal
of Pb(II) Ion using TiO2/ZnO/SiO2 Nanocomposite from Aqueous Solutions
via Adsorption-Photocatalysis Process
(Penyingkiran Cekap Ion Pb(II) menggunakan Nanokomposit TiO2/ZnO/SiO2 daripada Larutan Akua melalui Proses Penjerapan-Fotokatalisis)
DADAN
HADIAN1,2, ANITA ALNI3, AEP PATAH4, NURRAHMI
HANDAYANI1,5 & MUHAMMAD ALI ZULFIKAR1,*
1Analytical Chemistry Research Group, Institut Teknologi Bandung, Indonesia
2Center for Ceramics, Ministry of the Industry
Republic of Indonesia, Indonesia
3Organic Chemistry Research Group, Institut Teknologi Bandung, Indonesia
4Inorganic and
Physical Research Group, Institut Teknologi Bandung, Indonesia
5Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Indonesia
Received:
14 November 2023/Accepted: 20 March 2024
Abstract
This research aims
to investigate the usage of a TiO2/ZnO/SiO2 (TZS) composite prepared via a 24-h hydrothermal process at 180° C to remove Pb(II) through adsorption-photocatalysis. Pb(II) exposure has known health risks, making this
study significant. The research explores the impact of pH, the nanocomposite
quantity, and contact time in the process. Adsorption-photocatalysis was carried out in the dark for 60 min, followed by irradiation with a 160-watt
mercury lamp. The adsorption process of Pb(II) ion
removal adhered to the pseudo-second-order model regarding kinetics, while the
adsorption isotherm corresponded to the Freundlich isotherm. Additionally, the assessment of photocatalysis kinetics showed that the removal of Pb(II) ions
followed a pseudo-first-order model, resulting in a 99.58% elimination of Pb(II) ions. Post-adsorption-photocatalytic treatment, a
yellowish precipitate was observed. The XRD pattern result of the yellowish
precipitate confirmed the presence of PbO as the
formed Pb phase. The study concludes that the TiO2/ZnO/SiO2 nanocomposite as adsorbent-photocatalyst is a highly effective, efficient, and
promising method to remove Pb(II) contamination from
aqueous solutions.
Keywords:
Adsorption-photocatalytic; removal Pb(II) ion; TiO2/ZnO/SiO2 composite
Abstrak
Penyelidikan ini bertujuan untuk mengkaji penggunaan nanokomposit TiO2/ZnO/SiO2 (TZS) yang disediakan melalui proses hidrotermal selama 24 jam pada suhu 180 °C untuk menyingkirkan Pb(II) melalui penjerapan-fotokatalisis. Pendedahan Pb(II) diketahui membawa risiko kesihatan, menjadikan kajian ini penting. Penyelidikan ini meneroka impak pH, kuantiti nanokomposit dan masa sentuhan dalam proses tersebut. Penjerapan-fotokatalisis dilakukan dalam gelap selama 60 minit, diikuti oleh penyinaran dengan lampu merkuri 160 watt. Proses penjerapan pengeluaran ion Pb(II) menurut model kinetik pseudo-tertib kedua, manakala isoterma penjerapan sejajar dengan isoterma Freundlich. Tambahan pula, penilaian kinetik fotokatalisis menunjukkan bahawa penyingkiran ion Pb(II) mengikuti model pseudo-tertib pertama, menghasilkan penghapusan ion Pb(II) sebanyak 99.58%. Selepas rawatan penjerapan-fotokatalisis, endapan kuning diperhatikan. Hasil corak XRD bagi endapan kekuningan mengesahkan kehadiran PbO sebagai fasa Pb yang terbentuk. Kajian ini menyimpulkan bahawa penjerap-fotokatalis nanokomposit TiO2/ZnO/SiO2 adalah kaedah yang sangat berkesan, cekap dan berpotensi untuk menyingkirkan pencemaran Pb(II) daripada larutan akua.
Kata kunci: Komposit TiO2/ZnO/SiO2; penjerapan-fotokatalitik; penyingkiran ion Pb(II)
REFERENCES
Al-Ghouti, M.A. & Da’ana, D.A. 2020. Guidelines for
the use and interpretation of adsorption isotherm models: A review. Journal
of Hazardous Materials 393: 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Alshoaibi, A. & Islam, S. 2021.
Thermally stable ZnO doped SiO2–TiO2 nanocomposite based
opto-chemical sensor. Materials Chemistry and Physics 267: 124687.
https://doi.org/10.1016/j.matchemphys.2021.124687
Armaković, S.J., Savanović,
M.M. & Armaković, S. 2023. Titanium dioxide as the most used
photocatalyst for water purification: An overview. Catalysts 13(1): 26.
https://doi.org/10.3390/catal13010026
Arora, R. 2019. Adsorption of heavy
metals-A review. Materials Today: Proceedings 18(7): 4745-4750.
https://doi.org/10.1016/j.matpr.2019.07.462
Artioli, Y. 2008. The chemistry of
adsorption. Encyclopedia of Ecology 5: 60-65.
https://www.sciencedirect.com/science/article/pii/B9780080454054002524
Baeissa, E.S. 2016. Photocatalytic
removal of Pb ions from aqueous solution using Fe2O3 doped in G-C3N4 nanocomposite under visible light. Frontiers
in Nanoscience and Nanotechnology 2(2): 100-106.
https://doi.org/10.15761/fnn.1000116
Balali-Mood, M., Naseri, K., Tahergorabi,
Z., Khazdair, M.R. & Sadeghi, M. 2021. Toxic mechanisms of five heavy
metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in
Pharmacology 12: 643972. https://doi.org/10.3389/fphar.2021.643972
Baniamerian, H., Teimoori, M. &
Saberi, M. 2021. Fe2O3/TiO2/activated carbon
nanocomposite with synergistic effect of adsorption and photocatalysis. Chemical
Engineering and Technology 44(1): 130-139.
https://doi.org/10.1002/ceat.202000403
Bao, S., Yang, W., Wang, Y., Yu, Y.
& Sun, Y. 2020. One-pot synthesis of magnetic graphene oxide composites as
an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from
aqueous solution. Journal of Hazardous Materials 381: 120914.
https://doi.org/10.1016/j.jhazmat.2019.120914
Drygała, A., Starowicz, Z.,
Gawlińska-Nęcek, K., Karolus, M., Lipiński, M., Jarka, P.,
Matysiak, W., Tillová, E., Palček, P. & Tański, T. 2023. Hybrid
mesoporous TiO2/ZnO electron transport layer for efficient
perovskite solar cell. Molecules 28(15): 5656. https://doi.org/10.3390/molecules28155656
Enculescu, M., Costas, A., Evanghelidis,
A. & Enculescu, I. 2021. Fabrication of ZnO and TiO2 nanotubes
via flexible electro-spun nanofibers for photocatalytic applications. Nanomaterials 11(5): 1305. https://doi.org/10.3390/nano11051305
Ezeonuegbu, B.A., Machido, D.A., Whong,
C.M.Z., Japhet, W.S., Alexiou, A., Elazab, S.T., Qusty, N., Yaro, C.A. &
Batiha, G.E.S. 2021. Agricultural waste of sugarcane bagasse as efficient
adsorbent for lead and nickel removal from untreated wastewater: Biosorption,
equilibrium isotherms, kinetics and desorption studies. Biotechnology
Reports 30: e00614. https://doi.org/10.1016/j.btre.2021.e00614
Fonseca-Cervantes, O.R., Pérez-Larios,
A., Arellano, V.H.R., Sulbaran-Rangel, B. & González, C.A.G. 2020. Effects
in band gap for photocatalysis in TiO2 support by adding gold and
ruthenium. Processes 8(9): 1032. https://doi.org/10.3390/pr8091032
Ghoniem, M.G., Ben Aissa, M.A., Ali,
F.A.M. & Khairy, M. 2022. Efficient and rapid removal of Pb(II) and Cu(II)
heavy metals from aqueous solutions by MgO nanorods. Inorganics 10(12):
256. https://doi.org/10.3390/inorganics10120256
Guo, Q., Zhou, C., Ma, Z. & Yang, X.
2019. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and
challenges. Advanced Materials 31(50): 1901997.
https://doi.org/10.1002/adma.201901997
Hikmah, N., Agustiningsih, D., Nuryono
& Kunarti, E.S. 2022. Preparation of iron-doped SiO2/TiO2 using silica from sugarcane bagasse ash for visible light degradation of congo
red. Indonesian Journal of Chemistry 22(2): 402-412.
https://doi.org/10.22146/ijc.69501
Huang, R., Lin, Q., Zhong, Q., Zhang,
X., Wen, X. & Luo, H. 2020. Removal of Cd(II) and Pb(II) from aqueous
solution by modified attapulgite clay. Arabian Journal of Chemistry 13(4): 4994-5008. https://doi.org/10.1016/j.arabjc.2020.01.022
Jimenez-Relinque, E., Lee, S.F., Plaza,
L. & Castellote, M. 2022. Synergetic adsorption–Photocatalysis process for
water treatment using TiO2 supported on waste stainless steel slag. Environmental
Science and Pollution Research 29(26): 39712-39722.
https://doi.org/10.1007/s11356-022-18728-8
Kabra, K., Chaudhary, R. & Sawhney,
R.L. 2008. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II):
Speciation modeling of metal-citric acid complexes. Journal of Hazardous
Materials 155(3): 424-432. https://doi.org/10.1016/j.jhazmat.2007.11.083
Kanakaraju, D., Mohamad Shahdad, N.R.,
Lim, Y.C. & Pace, A. 2019. Concurrent removal of Cr(III), Cu(II), and
Pb(II) ions from water by multifunctional TiO2/Alg/FeNPs beads. Sustainable
Chemistry and Pharmacy 14: 100176.
https://doi.org/10.1016/j.scp.2019.100176
Karapinar, H.S., Kilicel, F., Ozel, F.
& Sarilmaz, A. 2021. Fast and effective removal of Pb(II), Cu(II) and
Ni(II) ions from aqueous solutions with TiO2 nanofibers: Synthesis,
adsorption-desorption process and kinetic studies. International Journal of
Environmental Analytical Chemistry 103(16): 4731-4751.
https://doi.org/10.1080/03067319.2021.1931162
Kaur, M., Kumari, S. & Sharma, P.
2020. Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza
sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnology
Reports 25: e00410. https://doi.org/10.1016/j.btre.2019.e00410
Khanna, M., Mathur, A., Dubey, A.K.,
McLaughlin, J., Moirangthem, I., Wadhwa, S., Singh, D. & Kumar, R. 2020.
Rapid removal of lead(II) ions from water using iron oxide-tea waste
nanocomposite - A kinetic study. IET Nanobiotechnology 14(4): 275-280.
https://doi.org/10.1049/iet-nbt.2019.0312
Mai, H.P., Tanabe, S. & Dao, M.T.
2022. The effect of ZnO addition into TiO2 nano photocatalyst on the
degradation of dye compound in aqueous solution under UV-LED irradiation. Research
Squarehttps://doi.org/10.21203/rs.3.rs-1784067/v1
Monshi, A., Foroughi, M.R. & Monshi,
M.R. 2012. Modified Scherrer equation to estimate more accurately
nano-crystallite size using XRD. World Journal of Nano Science and
Engineering 2(3): 154-160. https://doi.org/10.4236/wjnse.2012.23020
Mostafa, N.G., Yunnus, A.F. &
Elawwad, A. 2022. Adsorption of Pb(II) from water onto ZnO, TiO2,
and Al2O3: Process study, adsorption behaviour, and
thermodynamics. Adsorption Science and Technology 2022: 7582756.
https://doi.org/10.1155/2022/7582756
Mousa, H.M., Alenezi, J.F., Mohamed,
I.M.A., Yasin, A.S., Hashem, A.F.M. & Abdal-Hay, A. 2021. Synthesis of TiO2@ZnO
heterojunction for dye photodegradation and wastewater treatment. Journal of
Alloys and Compounds 886: 161169.
https://doi.org/10.1016/j.jallcom.2021.161169
Murruni, L., Conde, F., Leyva, G. &
Litter, M.I. 2008. Photocatalytic reduction of Pb(II) over TiO2: New
insights on the effect of different electron donors. Applied Catalysis B:
Environmental 84(3-4): 563-569.
https://doi.org/10.1016/j.apcatb.2008.05.012
Mustapha, S., Shuaib, D.T., Ndamitso,
M.M., Etsuyankpa, M.B., Sumaila, A., Mohammed, U.M. & Nasirudeen, M.B.
2019. Adsorption isotherm, kinetic and thermodynamic studies for the removal of
Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia
lebbeck pods. Applied Water Science 9: 142.
https://doi.org/10.1007/s13201-019-1021-x
Nikolaychuk, P.A. 2018. The revised
potential – pH diagram for Pb – H2O system. Ovidius University
Annals of Chemistry 29(2): 55-67. https://doi.org/10.2478/auoc-2018-0008
Poursani, A.S., Nilchi, A., Hassani, A.,
Shariat, S.M. & Nouri, J. 2016. The synthesis of nano TiO2; and
its use for removal of lead ions from aqueous solution. Journal of Water
Resource and Protection 8(4): 438-448.
https://doi.org/10.4236/jwarp.2016.84037
Rilda, Y., Damara, D., Syukri, Putri,
Y.E., Refinel & Agustien, A. 2019. Synthesis of ZnO-TiO2/chitosan
nanorods by using precipitation methods and studying their structures and
optics properties at different precursor molar compositions. IOP Conference
Series: Earth and Environmental Science 217: 012015.
https://doi.org/10.1088/1755-1315/217/1/012015
Sadr, S., Langroudi, A.E., Nejaei, A.,
Rabiee, A. & Mansouri, N. 2021. Arsenic and lead removal from water by
nano-photocatalytic systems (a review). Anthropogenic Pollution Journal 5(1): 72-80. https://doi.org/10.22034/ap.2021.1924078.1094
Sagadevan, S., Fatimah, I., Egbosiub,
T.C., Alshahateet, S.F., Anita Lett, J., Weldegebrieal, G.K., Le, M.V. &
Johan, M.R. 2022. Photocatalytic efficiency of titanium dioxide for dyes and
heavy metals removal from wastewater. Bulletin of Chemical Reaction
Engineering & Catalysis 17(2): 430-450.
https://doi.org/10.9767/BCREC.17.2.13948.430-450
Sethy, N.K., Arif, Z., Mishra, P.K.
& Kumar, P. 2020. Green synthesis of TiO2 nanoparticles from Syzygium
cumini extract for photo-catalytic removal of lead (Pb) in explosive
industrial wastewater. Green Processing and Synthesis 9(1): 171-181.
https://doi.org/10.1515/gps-2020-0018
Shi, Q., Terracciano, A., Zhao, Y., Wei,
C., Christodoulatos, C. & Meng, X. 2019. Evaluation of metal oxides and
activated carbon for lead removal: Kinetics, isotherms, column tests, and the
role of co-existing ions. Science of the Total Environment 648: 176-183.
https://doi.org/10.1016/j.scitotenv.2018.08.013
Shirsath, D.S. 2022. Synthesis and
application of magnetic nanoadsorbent in removal of toxic metals from aqueous
solution. Journal of Water and Environmental Nanotechnology 7(1):
89-100. https://doi.org/10.22090/jwent.2022.01.007
Siddeeg, S.M. 2020. A novel synthesis of
TiO2/GO nanocomposite for the uptake of Pb2+ and Cd2+ from wastewater. Materials Research Express 7(2): 025038.
https://doi.org/10.1088/2053-1591/ab7407
Song, W., Zhao, J., Xie, X., Liu, W.,
Liu, S., Chang, H. & Wang, C. 2021. Novel BiOBr by compositing low-cost
biochar for efficient ciprofloxacin removal: The synergy of adsorption and
photocatalysis on the degradation kinetics and mechanism insight. RSC
Advances 11(25): 15369-15379. https://doi.org/10.1039/d1ra00941a
Tanaka, K., Harada, K. & Murata, S.
1986. Photocatalytic deposition of metal ions onto TiO2 powder. Solar
Energy 36(2): 159-161. https://doi.org/10.1016/0038-092X(86)90121-0
Thabede, P.M., Shooto, N.D. &
Naidoo, E.B. 2020. Removal of methylene blue dye and lead ions from aqueous
solution using activated carbon from black cumin seeds. South African
Journal of Chemical Engineering 33: 39-50.
https://doi.org/10.1016/j.sajce.2020.04.002
Tobaldi, D.M., Tucci, A., Škapin, A.S.
& Esposito, L. 2010. Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity. Journal of the European
Ceramic Society 30(12): 2481-2490.
https://doi.org/10.1016/j.jeurceramsoc.2010.05.014
Verma, M., Tyagi, I., Chandra, R. &
Gupta, V.K. 2017. Adsorptive removal of Pb (II) ions from aqueous solution
using CuO nanoparticles synthesized by sputtering method. Journal of
Molecular Liquids 225: 936-944.
https://doi.org/10.1016/j.molliq.2016.04.045
Wahyuni, E.T., Mochammad, R.S., Mahira,
N.S., Lestari, N.D., Syoufian, A. & Abdillah Nasir, T. 2022. Enhancement of
TiO2 activity under visible light by doping S element from sulfur
core for Pb(II) photo-oxidation. Reaction Kinetics, Mechanisms and Catalysis 135(5): 2783-2796. https://doi.org/10.1007/s11144-022-02268-w
Wahyuni, E., Aprilita, N., Hatimah, H.,
Wulandari, A. & Mudasir, M. 2015. Removal of toxic metal ions in water by
photocatalytic method. American Chemical Science Journal 5(2): 194-201.
https://doi.org/10.9734/acsj/2015/13807
Wang, X., Ding, H., Sun, S., Zhang, H.,
Zhou, R., Li, Y., Liang, Y. & Wang, J. 2021. Preparation of a
temperature-sensitive superhydrophobic self-cleaning SiO2-TiO2@PDMS
coating with photocatalytic activity. Surface and Coatings Technology 408: 126853. https://doi.org/10.1016/j.surfcoat.2021.126853
Widyastuti, E., Chiu, C.T., Hsu, J.L.
& Lee, Y.C. 2023. Photocatalytic antimicrobial and photostability studies
of TiO2/ZnO thin films. Arabian Journal of Chemistry 16(8):
105010. https://doi.org/10.1016/j.arabjc.2023.105010
Xiong, C., Wang, W., Tan, F., Luo, F.,
Chen, J. & Qiao, X. 2015. Investigation on the efficiency and mechanism of
Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. Journal
of Hazardous Materials 299: 664-674. https://doi.org/10.1016/j.jhazmat.2015.08.008
Xiong, Z., Lei, Z., Ma, S., Chen, X.,
Gong, B., Zhao, Y., Zhang, J., Zheng, C. & Wu, J.C.S. 2017. Photocatalytic
CO2 reduction over V and W codoped TiO2 catalyst in an
internal-illuminated honeycomb photoreactor under simulated sunlight
irradiation. Applied Catalysis B: Environmental 219: 412-424.
https://doi.org/10.1016/j.apcatb.2017.07.078
Xu, K., Liu, Z., Qi, S., Yin, Z., Deng,
S., Zhang, M. & Sun, Z. 2020. Construction of Ag-modified TiO2/ZnO
heterojunction nanotree arrays with superior photocatalytic and
photoelectrochemical properties. RSC Advances 10(57): 34702-34711.
https://doi.org/10.1039/d0ra06596j
Yang, X., Guo, N., Yu, Y., Li, H., Xia,
H. & Yu, H. 2020. Synthesis of magnetic graphene oxide-titanate composites
for efficient removal of Pb(II) from wastewater: Performance and mechanism. Journal
of Environmental Management 256: 109943.
https://doi.org/10.1016/j.jenvman.2019.109943
Yang, Z.P. & Zhang, C.J. 2010.
Kinetics of photocatalytic reduction of Pb(II) on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Thin Solid Films 518(21):
6006-6009. https://doi.org/10.1016/j.tsf.2010.06.041
You, S., Hu, Y., Liu, X. & Wei, C.
2018. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light. Applied Catalysis B:
Environmental 232: 288-298. https://doi.org/10.1016/j.apcatb.2018.03.025
Zhang, Y., Song, X., Zhang, P., Gao, H.,
Ou, C. & Kong, X. 2020. Production of activated carbons from four wastes
via one-step activation and their applications in Pb2+ adsorption:
Insight of ash content. Chemosphere 245: 125587.
https://doi.org/10.1016/j.chemosphere.2019.125587
Zhao, X., Jia, Q., Song, N., Zhou, W.
& Li, Y. 2010. Adsorption of Pb(II) from an aqueous solution by titanium
dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics, and
isotherms. Journal of Chemical and Engineering Data 55(10): 4428-4433.
https://doi.org/10.1021/je100586r
Zhou, K., Ding, Y., Zhang, L., Wu, H.
& Guo, J. 2020. Synthesis of mesoporous ZnO/TiO2-SiO2 composite material and its application in photocatalytic adsorption
desulfurization without the addition of an extra oxidant. Dalton Transactions 49(5): 1600-1612. https://doi.org/10.1039/c9dt04454j
Zulfikar, M.A., Chandra, A.D., Rusnadi,
Setiyanto, H., Handayani, N. & Wahyuningrum, D. 2020. TiO2/ZnO
nanocomposite photocatalyst: Synthesis, characterization and their application
for degradation of humic acid from aqueous solution. Songklanakarin Journal
of Science and Technology 42(2): 439-446.
https://doi.org/10.14456/sjst-psu.2020.57
*Corresponding author: email: zulfikar@chem.itb.ac.id
|